Chapter 3.(b) Minimum-variance parameter estimation

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

1 / 21

Non-random parameter estimation: MVUE

- No prior on Θ .
- How to evaluate performance?
 - Cant average conditional risk without the prior
 - $\hat{\theta}(y) = \theta_0$ may work well only around θ_0 .
 - Seek estimators suitable for all θ .
 - Restrict the search to **unbiased estimator**:

$$E[\hat{\theta}(y)] = \theta, \quad \forall \theta \in \Lambda$$

■ Minimize the MSE risk:

$$R_{\theta}(\hat{\theta}) = E_{Y}[(\hat{\theta} - \theta)^{2}]$$

- For unbiased case the above equals to the variance.
- Minimum variance unbiased estimator (MVUE).
- If linear, then it is called best linear unbiased estimate (BLUE).

Sufficient statistics

- \blacksquare Can we summarize the observations without penalty in estimating θ ?
- Observation: Y, Statistic: T(Y).
- **Sufficient statistic:** T(Y) is sufficient statistic for estimating θ , if

$$P_{\theta}(Y = y | T(Y) = t)$$

is not a function of θ .

■ Minimal sufficient statistic: A sufficient statistic *T* is minimal, if it is a function of every other sufficient statistic. (May be hard to find.)

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

3 / 21

Example

Consider $Y_k = \Theta + N_k$, $N_k \sim \mathcal{N}(0,1)$ i.i.d. with $T(\underline{Y}) = \frac{1}{n} \sum_{k=1}^n Y_k$.

The Factorization Theorem

Theorem

Given a family of densities $\{p_{\theta}, \theta \in \Lambda\}$, a statistic T is sufficient if and only if there exists functions $g_{\theta}(\cdot)$ and $h(\cdot)$ such that, for all $y \in \Gamma$ and $\theta \in \Lambda$, $p_{\theta}(y) = g_{\theta}[T(y)]h(y)$.

Proof:

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

5 / 21

Example: Likelihood ratio

■ Consider hypothesis testing $\Lambda = \{0,1\}$ with densities p_0, p_1 .

The Rao-Blackwell Theorem

- Consider estimating $g(\theta)$, a function of θ .
- Idea: Use sufficient statistic to improve an unbiased estimator.

Theorem

Suppose $\hat{g}(y)$ is an unbiased estimate of $g(\theta)$ and T is sufficient for θ . Define

$$\tilde{g}(T(y)) = E_{\theta}[\hat{g}(Y)|T(Y) = T(y)].$$

Then,

- a) $\tilde{g}(T(Y))$ is also an unbiased estimate of $g(\theta)$, and
- b) $var_{\theta}(\tilde{g}(T(Y))) \leq var_{\theta}(\hat{g}(Y))$, with equality if and only if $P_{\theta}(\hat{g}(Y) = \tilde{g}(T(Y))) = 1$.

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

7 / 21

The Rao-Blackwell Theorem

Proof:

a) Unbiasedness:

■ b) Variance:

Corollary to Rao-Blackwell Theorem

Corollary

If T is a sufficient statistic for θ and there exists a unique function of T that is an unbiased estimator of $g(\theta)$, then that function of T is an MVUE of $g(\theta)$.

Proof:

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

9 / 21

Completeness

- A family of distributions $\{P_{\theta}, \theta \in \Lambda\}$ is **complete** if $E_{\theta}[f(Y)] = 0, \forall \theta \in \Lambda$ implies that f(Y) = 0 with probability 1, $\forall \theta \in \Lambda$.
- Analogy: Set of vectors in \mathbb{R}^n is called complete if they span \mathbb{R}^n .
- Discrete example:

Examples on Completeness

$$\bullet \left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} \theta \\ \theta \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right), \ f(\underline{y}) = y_1 - y_2.$$

lacksquare $Y \sim \mathcal{N}(\theta, 1)$ and $\theta \in \mathcal{N}(0, 1)$.

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

11 / 21

Completeness and Sufficiency

■ Let T be sufficient statistic for θ , and $T(Y) \sim Q_{\theta}$ when $Y \sim P_{\theta}$. If $\{Q_{\theta}, \theta \in \Lambda\}$ is complete, then T is said to be a **complete sufficient statistic**.

Theorem

Any unbiased estimator that is a function of a complete sufficient statistic is MVUE.

Proof:

A recipe for MVUE

- Finding MVUE:
 - Find a complete sufficient statistic for θ .
 - Find an unbiased estimator $\hat{g}(y)$ of $g(\theta)$.
 - Then, $\tilde{g}(T(y)) = E_{\theta}[\hat{g}(Y)|T(Y) = T(y)]$ is an MVUE of $g(\theta)$.
- First step is easy for exponential families.

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

13 / 21

Exponential Families

■ $\{P_{\theta}, \theta \in \Lambda\}$ is said to be an **exponential family** if there are real-valued functions $C, Q_1, \dots, Q_m, T_1, \dots, T_m, h$ such that

$$p_{ heta}(y) = C(heta) \exp \left\{ \sum_{l=1}^{m} Q_{l}(heta) T_{l}(y) \right\} h(y)$$

for all $\theta \in \Lambda$ and $y \in \Gamma$.

■ Completeness theorem for exponential families: Suppose $\Gamma = \mathbb{R}^n$, $\Lambda \subset \mathbb{R}^m$, and, for each θ ,

$$p_{\theta}(y) = C(\theta) \exp \left\{ \sum_{l=1}^{m} \theta_{l} T_{l}(y) \right\} h(y)$$

with real-valued functions C, T_1, \dots, T_m, h . Then, $T(y) = [T_1(y), \dots, T_m(y)]$ is a complete sufficient statistic for $\{P_{\theta}, \theta \in \Lambda\}$ if Λ contains a m-dimensional rectangle.

■ **Note:** Complete sufficient statistics are minimal.

Example

- Exponential families: Gaussian, Laplacian, Poisson, binomial, geometric distributions.
- Complete sufficient statistic: $\mathsf{Consider} \left[\begin{array}{c} \mathsf{Y}_1 \\ \mathsf{Y}_2 \end{array} \right] \sim \mathcal{N} \left(\left[\begin{array}{c} \theta \\ \theta \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \right), \ \theta \in \mathbb{R}.$

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

15 / 21

MVUE Example 1

- $Y_k = N_k + \mu s_k$ for $k = 1, \dots, n$
 - $N \sim \mathcal{N}(\underline{0}, \sigma^2 I).$
 - s_k are known $(s_1 \neq 0)$ σ^2 known $(\sigma^2 > 0)$

 - Objective: Estimate μ .
- Consider

$$p_{\mu}(\underline{y}) =$$

- We have
 - $\theta_1 =$

 - $T(\underline{y}) = h(\underline{y}) = C(\overline{\theta}_1) =$
- T is a complete sufficient statistic.

MVUE Example 1

- Consider $\hat{g}(\underline{y}) = \frac{y_1}{s_1}$
- Define $\tilde{g}(T(\underline{y})) = E_{\theta_1}[\frac{Y_1}{s_1}|T(\underline{Y}) = T(\underline{y})]$

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

17 / 21

MVUE Example 1

■ Consider \underline{A} and \underline{B} are jointly Gaussian.

$$\left[\begin{array}{c} \underline{A} \\ \underline{B} \end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c} \underline{\mu}_{A} \\ \underline{\mu}_{B} \end{array}\right], \left[\begin{array}{cc} \Sigma_{A} & \Sigma_{AB} \\ \Sigma_{AB}^{T} & \Sigma_{B} \end{array}\right]\right)$$

■ Then, $\underline{B}|\underline{A} \sim \mathcal{N}(\underline{\mu}_B + \Sigma_{AB}^T \Sigma_A^{-1} (\underline{A} - \underline{\mu}_A), \Sigma_B - \Sigma_{AB}^T \Sigma_A^{-1} \Sigma_{AB})$

MVUE Example 1

■ Recall the Bayes estimator

$$\hat{\mu}_B = \gamma \left(\frac{\underline{s}^T \underline{y}}{||\underline{s}||^2} \right) + (1 - \gamma)\mu$$

ECE 639 - Detection and Estimation - Spring 2014 - University of Arizona - O. Ozan Koyluoglu

19 / 21

MVUE Example 2

- Objective: Estimate μ, σ^2 .
- Consider $p_{\mu,\sigma^2}(\underline{y}) =$
- We have
 - lacksquare $\theta_1 =$

 - $\theta_2 =$ $T_1(\underline{y}) =$ $T_2(\underline{y}) =$ $h(\underline{y}) =$ $C(\theta_1, \theta_2) =$
- Is $T = [T_1, T_2]$ a complete sufficient statistic for $\underline{\theta}$?

MVUE Example 2

■ Need to estimate $\mu = g_1(\underline{\theta}) = \frac{-\theta_1}{2\theta_2}$, and $\sigma^2 = g_2(\underline{\theta}) = \frac{-1}{2\theta_2}$.